0

Full Content is available to subscribers

Subscribe/Learn More  >

Time-Resolved Film-Cooling Flows at Low and High Density Ratios

[+] Author Affiliations
Molly K. Eberly, Karen A. Thole

The Pennsylvania State University, University Park, PA

Paper No. GT2013-95031, pp. V03BT13A041; 12 pages
doi:10.1115/GT2013-95031
From:
  • ASME Turbo Expo 2013: Turbine Technical Conference and Exposition
  • Volume 3B: Heat Transfer
  • San Antonio, Texas, USA, June 3–7, 2013
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5515-7
  • Copyright © 2013 by ASME

abstract

Film-cooling is one of the most prevalent cooling technologies that is used for gas turbine airfoil surfaces. Numerous studies have been conducted to give the cooling effectiveness over ranges of velocity, density, mass flux, and momentum flux ratios. Few studies have reported flowfield measurements with even fewer of those providing time-resolved flowfields. This paper provides time-averaged and time-resolved particle image velocimetry data for a film-cooling flow at low and high density ratios. A generic film-cooling hole geometry with wide lateral spacing was used for this study, which was a 30° inclined round hole injecting along a flat plate with lateral spacing P/D = 6.7. The jet Reynolds number for flowfield testing varied from 2500 to 7000. The data indicate differences in the flowfield and turbulence characteristics for the same momentum flux ratios at the two density ratios. The time-resolved data indicate Kelvin-Helmholtz breakdown in the jet-to-freestream shear layer.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In