0

Full Content is available to subscribers

Subscribe/Learn More  >

Adiabatic and Overall Effectiveness for a Fully Cooled Turbine Vane

[+] Author Affiliations
Thomas E. Dyson, John W. McClintic, David G. Bogard

The University of Texas at Austin, Austin, TX

Sean D. Bradshaw

Pratt & Whitney, East Hartford, CT

Paper No. GT2013-94928, pp. V03BT13A037; 12 pages
doi:10.1115/GT2013-94928
From:
  • ASME Turbo Expo 2013: Turbine Technical Conference and Exposition
  • Volume 3B: Heat Transfer
  • San Antonio, Texas, USA, June 3–7, 2013
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5515-7
  • Copyright © 2013 by ASME

abstract

Adiabatic and overall effectiveness data were measured for a fully cooled, scaled up turbine vane model in a low speed linear cascade with a chord-exit Reynolds number of 700,000. The overall effectiveness is a measure of the external surface temperature relative to the mainstream temperature and the inlet coolant temperature, and consequently is a direct measure of how effectively the surface is cooled. This can be determined experimentally when the experimental model is constructed so that the Biot number of the model and the ratio of the external to internal heat transfer coefficient are chosen so that the model has a similar thermal behavior to that of an actual engine component. The model used in this study had a cooling design that consisted of 149 total coolant holes in 13 rows, including a showerhead containing five rows of holes. The model also incorporated an internal impingement cooling configuration. An identical model was also constructed out of low conductivity foam to measure adiabatic effectiveness. This is the first study to use a large scale, matched Biot number model to measure engine representative overall effectiveness for a vane employing full coverage film cooling. The focus of this research was to determine the relative contributions of the external and internal cooling, and to serve as a baseline for validation of computational simulations. Additionally, a simplified model using measurements of overall effectiveness with internal cooling alone was used to predict overall effectiveness downstream of the showerhead.

Copyright © 2013 by ASME
Topics: Turbines

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In