0

Full Content is available to subscribers

Subscribe/Learn More  >

Heat Transfer Boundary Condition Waveforms on a Turbine Blade Leading Edge With Unsteady Film Cooling

[+] Author Affiliations
James L. Rutledge

Air Force Institute of Technology, Wright Patterson AFB, OH

Paper No. GT2013-94587, pp. V03BT13A022; 10 pages
doi:10.1115/GT2013-94587
From:
  • ASME Turbo Expo 2013: Turbine Technical Conference and Exposition
  • Volume 3B: Heat Transfer
  • San Antonio, Texas, USA, June 3–7, 2013
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5515-7

abstract

It is necessary to understand how film cooling both reduces the adiabatic wall temperature and influences the heat transfer coefficient in order to predict the net heat flux to a gas turbine hot gas path component. Although a great number of studies have considered steady film cooling flows, the influence of film cooling unsteadiness has only recently been considered. Unsteadiness in the freestream flow or the coolant flow can cause fluctuations in both the adiabatic effectiveness and heat transfer coefficient, the dynamics of which have been difficult to measure. In previous studies, only time averaged effects have been measured. The present study has determined time resolved adiabatic effectiveness and heat transfer coefficient waveforms using a novel inverse heat transfer methodology. Unsteady film cooling was examined on the leading edge region of a circular cylinder simulating the leading edge of a turbine blade. Unsteady interactions between h and η, were examined near a coolant hole located 21.5° downstream from the leading edge stagnation line, angled 20° to the surface and 90° to the streamwise direction. The coolant plume is shown to shift back and forth as the jet’s momentum fluctuates. Increasing freestream turbulence was found to both reduce η, and the amplitude of the η waveforms.

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In