Full Content is available to subscribers

Subscribe/Learn More  >

Biot-Number Analogy for Design of Experiments in Turbine Cooling

[+] Author Affiliations
Tom I.-P. Shih, Saiprashanth Gomatam Ramachandran

Purdue University, West Lafayette, IN

Paper No. GT2013-95934, pp. V03BT11A018; 15 pages
  • ASME Turbo Expo 2013: Turbine Technical Conference and Exposition
  • Volume 3B: Heat Transfer
  • San Antonio, Texas, USA, June 3–7, 2013
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5515-7
  • Copyright © 2013 by ASME


Cooling of turbine components that come in contact with the hot gases strongly affects the turbine’s efficiency and service life. Designing effective and efficient cooling configurations requires detailed understanding on how geometry and operating conditions affect the way coolant cools the turbine materials. Experimental measurements that can reveal such information are difficult and costly to obtain because gas turbines operate at high temperatures (up to 2,000 K), high pressures (30+ bar), and the dimensions of many key features in the cooling configurations are small (millimeters or smaller). This paper presents a method that enables experiments to be conducted at near room temperatures, near atmospheric pressures, and using scaled-up geometries to reveal the temperature and heat-flux distributions within turbine materials as if the experiments were conducted under engine operating conditions. The method is demonstrated by performing conjugate CFD analyses on two test problems. Both problems involve a TBC-coated flat plate exposed to a hot-gas environment on one side and coolant flow on the other. In one problem, the heat transfer on the coolant side is enhanced by inclined ribs. In the other, it is enhanced by an array of pin fins.

This conjugate CFD study is based on 3-D steady RANS closed by the shear-stress-transport turbulence model for the fluid phase and the Fourier law for the solid phase. Results obtained show that, of the dimensionless parameters that are important to this problem, it is the Biot number that dominates. This study also shows that for two geometrically similar configurations, if the Biot number distributions on the corresponding hot-gas and coolant sides are nearly matched, then the magnitude and contours of the non-dimensional temperature and heat-flux distributions in the material will be nearly the same for the two configurations — even though the operating temperatures and pressures differ considerably. Thus, experimental measurements of temperature and heat-flux distributions within turbine materials that are obtained under ‘laboratory’ conditions could be scaled up to provide meaningful results under ‘engine’ relevant conditions.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In