Full Content is available to subscribers

Subscribe/Learn More  >

Large-Eddy Simulation and Conjugate Heat Transfer Around a Low-Mach Turbine Blade

[+] Author Affiliations
Florent Duchaine

CERFACS, Toulouse, France

Nicolas Maheu, Vincent Moureau

CORIA, Saint-Etienne du Rouvray, France

Guillaume Balarac

LEGI, Grenoble, France

Stéphane Moreau

Université de Sherbrooke, Sherbrooke, QC, Canada

Paper No. GT2013-94257, pp. V03BT11A004; 14 pages
  • ASME Turbo Expo 2013: Turbine Technical Conference and Exposition
  • Volume 3B: Heat Transfer
  • San Antonio, Texas, USA, June 3–7, 2013
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5515-7
  • Copyright © 2013 by ASME


Determination of heat loads is a key issue in the design of gas turbines. In order to optimize the cooling, an exact knowledge of the heat flux and temperature distributions on the airfoils surface is necessary. Heat transfer is influenced by various factors, like pressure distribution, wakes, surface curvature, secondary flow effects, surface roughness, free stream turbulence and separation. All these phenomenon are challenges for numerical simulations. Among numerical methods, Large Eddy Simulations (LES) offers new design paths to diminish development costs of turbines through important reductions of the number of experimental tests. In this study, LES is coupled with a thermal solver in order to investigate the flow field and heat transfer around a highly loaded low pressure water-cooled turbine vane at moderate Reynolds number (150 000). The meshing strategy (hybrid grid with layers of prisms at the wall and tetrahedra elsewhere) combined with a high fidelity LES solver gives accurate predictions of the wall heat transfer coefficient for isothermal computations. Mesh convergence underlines the known result that wall-resolved LES requires discretisations for which y+ is of the order of one. The analysis of the flow field gives a comprehensive view of the main flow features responsible of heat transfer, mainly the separation bubble on the suction side that triggers transition to a turbulent boundary layer and the massive separation region on the pressure side. Conjugate heat transfer computation gives access to the temperature distribution in the blade, which is in good agreement with experimental measurements. Finally, given the uncertainty on the coolant water temperature provided by experimentalist, uncertainty quantification allows apprehending the effect of this parameter on the temperature distribution.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In