0

Full Content is available to subscribers

Subscribe/Learn More  >

Rotorcraft Engine Cycle Optimization at Mission Level

[+] Author Affiliations
Ioannis Goulos, Fabian Hempert, Vishal Sethi, Vassilios Pachidis

Cranfield University, Bedfordshire, UK

Roberto d’Ippolito, Massimo d’Auria

NOESIS Solutions, Leuven, Belgium

Paper No. GT2013-95678, pp. V002T07A028; 14 pages
doi:10.1115/GT2013-95678
From:
  • ASME Turbo Expo 2013: Turbine Technical Conference and Exposition
  • Volume 2: Aircraft Engine; Coal, Biomass and Alternative Fuels; Cycle Innovations
  • San Antonio, Texas, USA, June 3–7, 2013
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5513-3
  • Copyright © 2013 by ASME

abstract

This work investigates the potential to reduce fuel consumption associated with civil rotorcraft operations at mission level, through optimization of the engine design point cycle parameters. An integrated simulation framework, comprising models applicable to rotorcraft flight dynamics, rotor blade aeroelasticity and gas turbine performance, has been deployed. A comprehensive and computationally efficient optimization strategy, utilizing a novel particle-swarm method, has been structured. The developed methodology has been applied on a twin-engine light and a twin-engine medium rotorcraft configuration. The potential reduction in fuel consumption has been evaluated in the context of designated missions, representative of modern rotorcraft operations. Optimal engine design point cycle parameters, in terms of total mission fuel consumption, have been obtained. Pareto front models have been structured, describing the optimum inter-relationship between maximum shaft power and mission fuel consumption. The acquired results suggest that, with respect to technological limitations, mission fuel economy can be improved with the deployment of design specifications leading to increased thermal efficiency, whilst simultaneously catering for sufficient performance to satisfy airworthiness certification requirements. The developed methodology enables the identification of optimum engine design specifications using a single design criterion; the respective trade-off between fuel economy and payload–range capacity, through maximum contingency shaft power, that the designer is prepared to accept.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In