Full Content is available to subscribers

Subscribe/Learn More  >

An Innovative Inlet Air Cooling System for IGCC Power Augmentation: Part III — Computational Fluid Dynamic Analysis of Syngas Combustion in Nitrogen-Enriched Air

[+] Author Affiliations
Mirko Morini, Michele Pinelli, Pier Ruggero Spina, Anna Vaccari

Università degli Studi di Ferrara, Ferrara, Italy

Paper No. GT2013-94094, pp. V002T03A002; 8 pages
  • ASME Turbo Expo 2013: Turbine Technical Conference and Exposition
  • Volume 2: Aircraft Engine; Coal, Biomass and Alternative Fuels; Cycle Innovations
  • San Antonio, Texas, USA, June 3–7, 2013
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5513-3
  • Copyright © 2013 by ASME


In recent years, an innovative system for power augmentation has been presented by the authors. The system is based on gas turbine inlet air cooling by means of liquid nitrogen sprayers. This system is not characterized by the limits of water evaporative cooling (i.e. lower temperature limited by air saturation) and refrigeration cooling (i.e. effectiveness limited by pressure drop in the heat exchangers), but the injection of a large amount of liquid nitrogen at gas turbine inlet section can be disputable.

In fact, the air composition changes, though not considerably, after nitrogen injection. The oxygen content always seems high enough to allow a regular combustion. In any case, local effects should be further investigated.

In this paper, the effect of the increase in nitrogen molar fraction of combustion air is evaluated. A micro gas turbine combustion chamber geometry (i.e. a reverse flow tubular combustor) is taken into consideration since its model has been widely validated by the authors. The analyses are performed by considering two different fuels: methane (which is the design fuel) and syngas. The results are compared in terms of overall performance (e.g. TIT, pollutant emissions) and local distributions (e.g. flow fields, flame shape and position).

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In