0

Full Content is available to subscribers

Subscribe/Learn More  >

Modelling of Hydraulic Seals Using an Axisymmetric Volume of Fluid Method (VOF)

[+] Author Affiliations
Hans-Christian Mathews, Hervé Morvan, Davide Peduto

University of Nottingham, Nottingham, UK

Yi Wang, Colin Young

Rolls-Royce UK plc, Derby, UK

Hans-Jörg Bauer

Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

Paper No. GT2013-95070, pp. V002T01A020; 9 pages
doi:10.1115/GT2013-95070
From:
  • ASME Turbo Expo 2013: Turbine Technical Conference and Exposition
  • Volume 2: Aircraft Engine; Coal, Biomass and Alternative Fuels; Cycle Innovations
  • San Antonio, Texas, USA, June 3–7, 2013
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5513-3
  • Copyright © 2013 by Rolls-Royce plc

abstract

Hydraulic seals are used in aero engines because of their excellent sealing properties. Sealing of oil inside bearing chambers is extremely important as leakage of oil into internal spaces of the engine increases the oil consumption and can result in undesirable effects, ranging from cosmetic to mechanical. A robust dimensioning of the seal is therefore essential. However, the maximum pressure capacity of the hydraulic seal is not always determined accurately enough with many of the existing design approaches, so a high safety factor must be used. It is desirable to keep improving the accuracy of these methods, in particular to handle ever larger pressure differences.

A new dimensionless design method is therefore introduced here to improve the determination of the maximum pressure capacity. This paper reports on a numerical CFD investigation using an axisymmetric Volume-of-Fluid (VOF) method building on the work of Young and Chew [1]. The numerical results are validated with the results of a two-shaft test rig, alongside analytical calculation results. Additionally, a parametric study based on CFD simulations is performed to identify dominant influence quantities. The parameters include the fluid properties of oil, the shaft speeds and the geometry parameters of the seal. Employing a data reduction approach, a new dimensionless number is introduced which allows the presentation of experimental and numerical results of the hydraulic seal in a dimensionless form. Based on this representation, a correlation is proposed, which shows a very promising trend.

This validated CFD investigation and subsequent correlation introduced here show significant potential for the dimensionless description of hydraulic seals and their maximum pressure capacity.

Copyright © 2013 by Rolls-Royce plc
Topics: Fluids , Modeling

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In