0

Full Content is available to subscribers

Subscribe/Learn More  >

Multiscale Modeling and Simulation of a Microbead in an Optical Trapping Process

[+] Author Affiliations
Mahdi Haghshenas-Jaryani, Nguyen T. Tran, Alan P. Bowling, James A. Drake, Samarendra Mohanty

University of Texas, Arlington, Arlington, TX

Paper No. NEMB2013-93059, pp. V001T05A003; 2 pages
doi:10.1115/NEMB2013-93059
From:
  • ASME 2013 2nd Global Congress on NanoEngineering for Medicine and Biology
  • ASME 2013 2nd Global Congress on NanoEngineering for Medicine and Biology
  • Boston, Massachusetts, USA, February 4–6, 2013
  • Conference Sponsors: Nanotechnology Institute, Bioengineering Division
  • ISBN: 978-0-7918-4533-2
  • Copyright © 2013 by ASME

abstract

The purpose of this work is to generate a theoretical model for the dynamics of a polystyrene microsphere under the influence of Gaussian beam optical tweezers (OTs) in the ray-optics regime. OTs use the radiation pressure from a focused laser beam to manipulate microscopic objects as small as atoms [1]. They have been used in the biological sciences to measure nanometer-range displacements, apply picoNewton-range forces, and determine the mechanical properties of DNA, cell membranes, whole cells, and microtubules. The proposed model takes into account the forces and moments imparted onto the microbead by the OTs beam, and uses a Newton-Euler Dynamics framework to generate the equations of motion. Although examination of dimensionless numbers and other indicators including, Reynolds number 10−9Re ≤ 10−4, Knudsen number 0.0001875, and the disproportionality between the mass and the viscous drag co-efficients O(10−4), does not clearly indicate whether this is a multiscale problem or not; but, a numerical integration of the original model leads to a long simulation run-time, a few days. Moreover, investigation of the step size showed that the adaptive numerical integrator was proceeding with a picosecond step size in order to achieve the requested accuracy. This situation implies a multiscale feature involved in the dynamics of optical trapping process of the small bead. To address this issue, a multiscale model is developed that helps to significantly reduce the simulation run-time and reveals underdamped behavior of the bead. In order to verify the theoretical model, experiments were carried out on a microsphere bead with 1.6μm diameter. A comparison of experimental data and simulation data indicate that this approach closely models microparticle behavior to the accuracy of the experiment under Gaussian beam optical tweezers.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In