0

Full Content is available to subscribers

Subscribe/Learn More  >

Investigations on Bubble-Induced Turbulence Modeling for Vertical Pipe Bubbly Flows

[+] Author Affiliations
Yixiang Liao, Dirk Lucas

Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden, Saxony, Germany

Paper No. ICONE20-POWER2012-54653, pp. 519-527; 9 pages
doi:10.1115/ICONE20-POWER2012-54653
From:
  • 2012 20th International Conference on Nuclear Engineering and the ASME 2012 Power Conference
  • Volume 4: Codes, Standards, Licensing, and Regulatory Issues; Fuel Cycle, Radioactive Waste Management and Decommissioning; Computational Fluid Dynamics (CFD) and Coupled Codes; Instrumentation and Controls; Fuels and Combustion, Materials Handling, Emissions; Advanced Energy Systems and Renewables (Wind, Solar, Geothermal); Performance Testing and Performance Test Codes
  • Anaheim, California, USA, July 30–August 3, 2012
  • Conference Sponsors: Nuclear Engineering Division, Power Division
  • ISBN: 978-0-7918-4498-4
  • Copyright © 2012 by ASME

abstract

Recently, the effect of bubbles on the generation and destruction of turbulence in the liquid phase, the so-called Bubble-Induced Turbulence (BIT), is getting more and more attention in the numerical simulation of bubbly flows. There are several theories and models available in the literature, which helps much to understand the inherent characteristics of BIT. However, a systematic validation of these models is still missing. In the current work, popular models considering the additional BIT are implemented into a 1D Test Solver, where the standard k-e model for traditional Shear-Induced Turbulence (SIT) is available. The Test Solver was developed specially for the case of vertical pipe flows by Lucas et al. (2001) and for the purpose of an efficient pre-test of closure models for CFD codes. Its general applicability has been tested in an amount of previous work such as Lucas et al. (2005; 2007).

In the current work, turbulence parameters (k, μt) as well as liquid velocity profiles predicted by the modified k-ε model with the consideration of BIT are compared with available experimental data published by different investigators.

The contribution of BIT and the effect of various models are investigated for mono-dispersed bubbly flows. The flow is assumed to be fully-developed and moreover, the radial gas volume fraction profile is taken from the measurement directly. The results prove that for the test cases with high gas volume fractions (high superficial gas velocity or low superficial liquid velocity) the neglecting of BIT will lead to an obvious underestimation of turbulence parameters. Furthermore, noticeable inconsistency can be observed in the results delivered by different BIT models, which is mainly caused by the time scale assumed by these models for the destruction of the pseudo turbulence. In a word, further effects are needed to be invested in this aspect.

Copyright © 2012 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In