0

Full Content is available to subscribers

Subscribe/Learn More  >

Experimental Investigations of an Industrial Lean Premixed Gas Turbine Combustor With High Swirling Flow

[+] Author Affiliations
Ivan R. Sigfrid, Ronald Whiddon, Robert Collin, Jens Klingmann

Lund University, Lund, Sweden

Abdallah Abou-Taouk

Chalmers University of Technology, Gothenburg, Sweden

Paper No. GTINDIA2012-9681, pp. 559-569; 11 pages
doi:10.1115/GTINDIA2012-9681
From:
  • ASME 2012 Gas Turbine India Conference
  • ASME 2012 Gas Turbine India Conference
  • Mumbai, Maharashtra, India, December 1, 2012
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4516-5
  • Copyright © 2012 by ASME

abstract

In the interest of understanding the prospects and restrictions of fuel flexibility in a prototype industrial gas turbine combustor, an experimental study is performed. Methane is used to characterize standard gas turbine operation; in addition a non-standard fuel is explored, generic syngas (67.5 % hydrogen, 22.5 % carbon monoxide and 10 % methane). Both these gases are also investigated after dilution with Nitrogen to a Wobbe index of 15 MJ/m3. All measurements are conducted at a preheat temperature of 650 K to mimic gas turbine conditions. The pressure is atmospheric. The burner examined is a downscaled industrial 4th generation DLE (dry low emissions) burner. This swirl-stabilized burner features three concentric sectors: the RPL (rich-pilot-lean), the Pilot and the Main. The burner is designed to be coupled with a quartz combustion liner allowing a variety of laser and optical diagnostics, including PIV (Particle Image Velocimetry) and OH-pLIF (planar Laser Induced Florescence). The mentioned techniques are used herein for identification of combustion and flow phenomena. For this study the measurement region is located at the burner recirculation zone. CFD (RANS) calculations are compared with the OH-pLIF images to identify the zones of active combustion. CFD is also used to see the effect of recirculation zone position when moving towards the lean blow out limit. Additionally, integral scales are calculated for each of the combustion cases and from these, the Kolmogorov scales are estimated. The flow field, imaged by PIV, shows that the recirculation zone location along the major flow axis is strongly dependent on the presence of combustion.

Copyright © 2012 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In