0

Full Content is available to subscribers

Subscribe/Learn More  >

Experimental Investigation and Finite Element Modeling Analysis of Photostrictive Optical Actuators

[+] Author Affiliations
Mosfequr Rahman, Masud Nawaz, Aniruddha Mitra

Georgia Southern University, Statesboro, GA

Nazanin Bassiri-Gharb

Georgia Institute of Technology, Atlanta, GA

John E. Jackson

The University of Alabama, Tuscaloosa, AL

Paper No. IMECE2012-88274, pp. 37-47; 11 pages
doi:10.1115/IMECE2012-88274
From:
  • ASME 2012 International Mechanical Engineering Congress and Exposition
  • Volume 9: Micro- and Nano-Systems Engineering and Packaging, Parts A and B
  • Houston, Texas, USA, November 9–15, 2012
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4525-7
  • Copyright © 2012 by ASME

abstract

Photostrictive materials are lanthanum-modified lead zirconatetitanate (Pb, La)(Zr, Ti) O3 ceramics doped with WO3, called PLZT, exhibit large photostriction under uniform illumination of high-energy light. Photostrictive materials are ferrodielectric ceramics that have a photostrictive effect. Photostriction arises from a superposition of the photovoltaic effect, i.e. the generation of large voltage from the irradiation of light, and the converse-piezoelectric effect, i.e. expansion or contraction under the voltage applied. Photostrictive materials offer the potential for actuators with many advantages over traditional transducing electromechanical actuators made of shape memory alloys and electroceramics (piezoelectric and electrostrictive). Drawback of traditional actuators is that they require hard-wired connections to transmit the control signals which introduce electrical noise into the control signals; on the other hand PLZT actuators offer non-contact actuation, remote control, and are immune from electric/magnetic disturbances.

The main goal of the research work is to investigate the feasibility of utilizing photostrictive materials as an optical actuator for Micro-Electro-Mechanical-Systems (MEMS) applications. In this investigation process both experimental and computational approaches have been implemented. In the experimental part of this research, a test set-up has been designed and developed to measure the photostriction effect of a PLZT thin film on a silicon wafer as smart beams. The experimental set-up includes high pressure short arc xenon lamp with lamp housing, power supply, lamp igniter, hot mirror, band pass filters, optical chopper, and laser sensor with sensor head and controller.1 μm PLZT thin film on the silicon wafer sample has been tested as a cantilever beam with different light intensities, and focusing the light at the different locations on the PLZT cantilever beam. The experiment has been performed for continuous and pulses of lights focusing on the PLZT optical actuator. An optical chopper was used to make pulses of light on the PLZT cantilever beam. Also, a computational finite element method useful for design of systems incorporating thin film photostrictive actuators has already been developed by the authors. The element has been implemented in an in-house finite element code. This derived finite element for continuous illumination of light on the photostrictive thin film has been used to investigate the application of photostrictive actuators for the different structures and various boundary conditions of microbeams with various actuator locations and length intensities. A successful conclusion of these tasks will affirm the potential of the PLZT optical actuator to use in the MEMS devices.

Copyright © 2012 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In