0

Full Content is available to subscribers

Subscribe/Learn More  >

Development and Validation of a Non-Linear Viscoelastic Viscoplastic Stress Model for a PFCB/PVDF Fuel Cell Membrane

[+] Author Affiliations
Jessica A. Wright, Michael W. Ellis, David A. Dillard, Scott W. Case, Robert B. Moore

Virginia Tech, Blacksburg, VA

Yongqiang Li, Yeh-Hung Lai, Craig S. Gittleman

General Motors Company, Honeoye Falls, NY

Paper No. IMECE2012-85427, pp. 347-356; 10 pages
doi:10.1115/IMECE2012-85427
From:
  • ASME 2012 International Mechanical Engineering Congress and Exposition
  • Volume 8: Mechanics of Solids, Structures and Fluids
  • Houston, Texas, USA, November 9–15, 2012
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4524-0
  • Copyright © 2012 by ASME and General Motors

abstract

Proton exchange membranes (PEMs) in operating fuel cells are subjected to varying thermal and hygral loads while under mechanical constraint imposed within the compressed stack. Swelling during hygrothermal cycles can result in residual in-plane tensile stresses in the membrane and lead to mechanical degradation or failure through thinning or pinhole development. Numerical models can predict the stresses resulting from applied loads based on material characteristics, thus helping to guide the development of more durable membrane materials. In this work, a non-linear viscoelastic stress model based on the Schapery constitutive formulation is used with a Zapas-Crissman viscoplastic term to describe the response of a novel membrane material comprised of a blend of perfluorocyclobutane (PFCB) ionomer and polyvinylidene fluoride (PVDF). Uniaxial creep and recovery tests are used to establish the time dependent linear viscoelastic modulus as well as the fitting parameters for the non-linear viscoelastic viscoplastic model. The stress model is implemented in a commercial finite element code, Abaqus®, to predict the response of a membrane subjected to mechanical loads. The stress model is validated by comparing predicted and experimental responses for membranes subjected to stress relaxation and multiple step creep loads in uniaxial tension.

Copyright © 2012 by ASME and General Motors

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In