0

Full Content is available to subscribers

Subscribe/Learn More  >

Dispersion Flow in Microchannels

[+] Author Affiliations
Alfir T. Akhmetov, Marat V. Mavletov, Sergey P. Sametov, Artur A. Rakhimov, Azat A. Valiev

Russian Academy of Sciences, Ufa, RussiaBashkir State University, Ufa, Russia

Iskander S. Akhatov

Bashkir State University, Ufa, RussiaNorth Dakota State University, Fargo, ND

Paper No. IMECE2012-86618, pp. 913-920; 8 pages
doi:10.1115/IMECE2012-86618
From:
  • ASME 2012 International Mechanical Engineering Congress and Exposition
  • Volume 7: Fluids and Heat Transfer, Parts A, B, C, and D
  • Houston, Texas, USA, November 9–15, 2012
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4523-3
  • Copyright © 2012 by ASME

abstract

The work is devoted to experimental investigations of the features of flow of dispersions in microchannels. The paper consists of three parts. In the first part the flow of emulsions in smooth contracting cylindrical microchannels is investigated. It is received that a significant role at dynamic blocking of channels is played by the inclusions comparable by size to the diameter of a narrowing. This is in spite of the fact that their influence on the change of a flow rate of emulsion before blocking is insignificant. In the second part the generation of emulsion in a complex structure of microchannels (micromodels) when water is displaced by composition of hydrocarbon with surfactants is investigated. The experimental dependences of the rheological characteristics of emulsions based on the composition of SAS and water at different concentrations of the aqueous phase can explain blocking of a porous structure by generated emulsion. In the third part a comparison of flow of water-in-oil emulsions with the suspension which was obtained by freezing the microdroplets of the aqueous phase of emulsions was studied. It was found that the blocking of suspension is not as complete as in the case of emulsion. It is explained by deformation of the droplets and by formation of a dense structure, as opposed to suspension of beads, through which hydrocarbon phase is filtered. A small increase in effective viscosity due to solidification of freezing droplets of the dispersed phase was found.

Copyright © 2012 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In