0

Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Simulation of Accident Scenario in High Temperature Gas Cooled (Pebble Bed) Nuclear Reactors

[+] Author Affiliations
Geoffrey J. Peter

Oregon Institute of Technology - Portland, Portland, OR

Paper No. IMECE2012-89109, pp. 605-614; 10 pages
doi:10.1115/IMECE2012-89109
From:
  • ASME 2012 International Mechanical Engineering Congress and Exposition
  • Volume 7: Fluids and Heat Transfer, Parts A, B, C, and D
  • Houston, Texas, USA, November 9–15, 2012
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4523-3
  • Copyright © 2012 by ASME

abstract

The accident scenario resulting from blockages due to the retention of dust in the coolant gas or from the rupture of one or more fuel particles used in the High Temperature Gas Cooled (Pebble Bed) Nuclear Reactors considered for the next generation of Advanced High Temperature Reactors (AHTR), for nuclear power production, and for high-temperature hydrogen production using nuclear reactors to reduce the carbon footprint is examined in this paper.

Blockages can cause local variations in flow and heat transfer that may lead to hot spots within the bed that could compromise reactor safety. Therefore, it is important to know the void fraction distribution and the interstitial velocity field in the packed bed. The blockage for this numerical study simulated a region with significantly lower void than that in the rest of the bed. Finite difference technique solved the simplified continuity, momentum, and energy equations.

Any meaningful outcome of the solution depended largely upon the validity of the boundary conditions. Among them, the inlet and outlet velocity profiles required special attention. Thus, a close approximation to these profiles obtained from an experimental set-up established the boundary conditions.

This paper presents the development of the elliptic-partial differential equation for a bed of pebbles, and the solution procedure. The paper also discusses velocity and temperature profiles obtained from both numerical and experimental setup, with and without effect of blockage. In addition, the paper compares the results obtained from the experimental set-up with numerical simulation using a commercially available code that uses finite element techniques.

Copyright © 2012 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In