0

Full Content is available to subscribers

Subscribe/Learn More  >

Modeling Approaches to Accurately Predict Minimum Fluidization Characteristics of Gas-Solid Fluidized Beds

[+] Author Affiliations
Santhip Krishnan Kanholy, Francine Battaglia

Virginia Tech, Blacksburg, VA

Paper No. IMECE2012-88577, pp. 2509-2517; 9 pages
doi:10.1115/IMECE2012-88577
From:
  • ASME 2012 International Mechanical Engineering Congress and Exposition
  • Volume 7: Fluids and Heat Transfer, Parts A, B, C, and D
  • Houston, Texas, USA, November 9–15, 2012
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4523-3
  • Copyright © 2012 by ASME

abstract

The hydrodynamics of fluidized beds involving gas and particle interactions are very complex and must be carefully considered when using computational fluid dynamics (CFD). Modeling particle interactions are even more challenging for binary mixtures composed of varying particle characteristics such as diameter or density. One issue is the presence of dead-zones, regions of particles that do not fluidize and accumulate at the bottom, affecting uniform fluidization. In Eulerian-Eulerian modeling, the solid phase is assumed to behave like a fluid and the presence of dead zones are not typically captured in a simulation. Instead, the entire bed mass present in an experiment is modeled, which assumes full fluidization. The paper will present modeling approaches that account for only the fluidizing mass by adjusting the initial mass present in the bed using pressure drop and minimum fluidization velocity from experiments. In order to demonstrate the fidelity of the new modeling approach, different bed materials are examined. Binary mixture models are also validated for two types of mixtures consisting of glass-ceramic and ceramic-ceramic compositions. It will be shown that adjusting the mass in the modeling of fluidized beds best represents the measured quantities of an experiment for both single-phase and binary mixtures.

Copyright © 2012 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In