0

Full Content is available to subscribers

Subscribe/Learn More  >

Building Energy Scenarios for Large Water Pumping Systems

[+] Author Affiliations
Margarita Gil Samaniego Ramos, Héctor Enrique Campbell Ramírez

Universidad Autónoma de Baja California, Mexicali, BCN, México

Paper No. IMECE2012-88642, pp. 1525-1531; 7 pages
doi:10.1115/IMECE2012-88642
From:
  • ASME 2012 International Mechanical Engineering Congress and Exposition
  • Volume 6: Energy, Parts A and B
  • Houston, Texas, USA, November 9–15, 2012
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4522-6
  • Copyright © 2012 by ASME

abstract

The life quality of the world’s population and its development activities mainly depend on the availability, quantity and quality of fresh water. Water scarcity at many regions around the globe present challenges towards improving efficiency and rationalizing its use. The state of Baja California, México, is located at the northwestern corner of Mexico at a large semiarid region where rain incidence is very low (169 mm annually); thus, its water provision is also scarce. Federal and state governments have made efforts to guarantee water accessibility to its municipalities. The Río Colorado-Tijuana Aqueduct (ARCT) is a large water supply system that provides 5.33 m3/s of water to these cities. Its 6 pumping stations elevate the water 1,061 m through 147 km of pipes, canals and tunnels, and its total installed motor capacity is of 106,000 HP.

Pumps are high energy consumers and represent a large fraction of operating costs in water supply systems. The volume pumped by the ARCT in 2010 was of 80.7 million of m3, while consuming 322.7 GWh annually at a cost of 23.8 million dollars. Implementing actions for the saving and efficient use of energy in hydraulic facilities is a worldwide priority to achieve rational water management and therefore national and regional sustainable development. Methodologies that improve energy savings while satisfying system performance criteria should be sought for better performance and management of the water supply systems.

For building energy scenarios for such systems, it is necessary to integrate and adapt different methodologies for the simulation and assessment of behavior and performance taking in account hydraulic, electric and economic issues. This paper presents different approaches and results when these methodologies are applied for the case of ARCT.

Copyright © 2012 by ASME
Topics: Water

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In