Full Content is available to subscribers

Subscribe/Learn More  >

Influence of Material Damping on In-Plane Modal Parameters for Rotating Disks

[+] Author Affiliations
Hamid R. Hamidzadeh, Ehsan Sarfaraz

Tennessee State University, Nashville, TN

Paper No. IMECE2012-86479, pp. 89-96; 8 pages
  • ASME 2012 International Mechanical Engineering Congress and Exposition
  • Volume 4: Dynamics, Control and Uncertainty, Parts A and B
  • Houston, Texas, USA, November 9–15, 2012
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4520-2
  • Copyright © 2012 by ASME


The linear in-plane free vibration of a thin, homogeneous, viscoelastic, rotating annular disk is investigated. In the development of an analytical solution, two dimensional elastodynamic theory is employed and the viscoelastic material for the medium is allowed by assuming complex elastic moduli. The general governing equations of motion are derived by implementing plane stress theory. Natural frequencies are computed for several modes at specific radius ratios with fixed-free boundary conditions and modal loss factors for different damping ratios are determined. The computed results were compared to previously established results. It was observed that the effects of rotational speed and hysteretic damping ratio on natural frequency and elastic stability of the rotating disks were related to the mode of vibration and type of circumferential wave occurring.

Copyright © 2012 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In