Full Content is available to subscribers

Subscribe/Learn More  >

Impact of Spindle Speed on Micro-Milling Stability

[+] Author Affiliations
Eric B. Halfmann, C. Steve Suh

Texas A&M University, College Station, TX

Paper No. IMECE2012-88071, pp. 687-693; 7 pages
  • ASME 2012 International Mechanical Engineering Congress and Exposition
  • Volume 4: Dynamics, Control and Uncertainty, Parts A and B
  • Houston, Texas, USA, November 9–15, 2012
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4520-2
  • Copyright © 2012 by ASME


Milling efficiency is hampered by excessive tool vibrations that negatively impact the work-piece quality. This is more of a concern in micro-milling where sudden tool breakage occurs before the operator can adjust cutting parameters. Due to different chip formation mechanisms in micro-milling, an increased tool-radius to feed-rate ratio, and higher spindle speeds, micro-milling is a highly non-linear process which can produce multiple and broadband frequencies which increase the probability of tool failure. Micro-milling is studied through the development and analysis of a 3-D nonlinear micro-milling dynamic model. A lumped mass, spring, damper system is assumed for modeling the dynamic properties of the tool. The force mechanism utilized is a slip-line field model that provides the advantages of being highly dynamic by accounting for the constantly changing effective rake angle and slip-line variables. Accurate prediction of the chip thickness is important in correctly predicting the dynamics of the system since the force mechanism and its variables are a function of the chip thickness. A novel approach for calculating the instantaneous chip thickness which accounts for the tool jumping out of the cut and elastic recovery of the work-piece is presented. The effective rake angle and helical angle is accounted for resulting in a 3-D micro-milling model. The model is shown to resolve the high frequency force components that are seen in experimental data available in literature. Also, exciting the system at various spindle speeds results in dynamic states of motion that negatively impact the process through increased vibration amplitude and a broad frequency bandwidth.

Copyright © 2012 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In