Full Content is available to subscribers

Subscribe/Learn More  >

Turning Dynamics: Part 2 — Stability at High Speed

[+] Author Affiliations
Eric B. Halfmann, C. Steve Suh, N. P. Hung

Texas A&M University, College Station, TX

Paper No. IMECE2012-87939, pp. 657-665; 9 pages
  • ASME 2012 International Mechanical Engineering Congress and Exposition
  • Volume 4: Dynamics, Control and Uncertainty, Parts A and B
  • Houston, Texas, USA, November 9–15, 2012
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4520-2
  • Copyright © 2012 by ASME


A comprehensive 3D lathe cutting model is validated by comparing numerical simulations to the experimental data obtained in Part 1 using instantaneous frequency. Comparison of chatter-free cutting demonstrates that the model effectively captures the work-piece natural frequency, tool natural frequency, a nonlinear mode, and the spindle speed, which are main components of the underlying dynamics observed experimentally. The model accurately simulates chatter vibrations characterized as increased vibration amplitude and the appearance of coupled tool – work-piece vibrations at a chatter frequency. The stability diagram constructed by running the model at various spindle speeds and depth-of-cuts demonstrates a general increase in the chatter-free critical depth-of-cut as the spindle speed increased. This chatter-free limit begins to exponentially level out as the spindle speed exceeds 1500RPM. At high spindle speeds the work-piece motions dominate the cutting dynamics, resulting in cases of excessive work-piece vibration amplitude and highly nonlinear frequencies which affect the efficiency of the process. The excessive work-piece amplitude cases create a second stability limit to be considered as a result of imbalance and configuration of the work-piece. Thus, work-piece dynamics should not be neglected in mathematical and experimental analyses for the design of machine tools and robust cutting control law.

Copyright © 2012 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In