0

Full Content is available to subscribers

Subscribe/Learn More  >

Autonomous Unmanned Aerial Vehicle System for Controlling Pest Bird Population in Vineyards

[+] Author Affiliations
Brian A. Grimm, Peter B. Cathcart, Robert C. Elgin, Greg L. Meshnik, John P. Parmigiani

Oregon State University, Corvallis, OR

Brooke A. Lahneman

University of Oregon, Eugene, OR

Paper No. IMECE2012-89528, pp. 499-505; 7 pages
doi:10.1115/IMECE2012-89528
From:
  • ASME 2012 International Mechanical Engineering Congress and Exposition
  • Volume 4: Dynamics, Control and Uncertainty, Parts A and B
  • Houston, Texas, USA, November 9–15, 2012
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4520-2
  • Copyright © 2012 by ASME

abstract

Pest birds have long been a significant source of crop loss for grape growers, especially during the critical weeks leading up to harvest when grape sugar levels are high. In Oregon’s Willamette Valley, vineyards have seen a marked increase in crop loss in the last few years despite widespread use of intrusive gas cannons/shotguns and expensive netting systems. In order to deter this pest bird population, we have created an Unmanned Aerial Vehicle (UAV) package capable of autonomous flight, which incorporates common pest bird scare tactics into this dynamic platform. The system has been designed to launch, complete its mission waypoints, and land completely under autonomous control. By using this autonomous guidance system, we are able to employ visual, auditory, and predator mimicry pest bird control techniques in such a way as to discourage habituation. While radio controlled UAVs have been used for bird control in airport settings for many years, these systems require a trained operator to constantly guide the aircraft. The autonomous UAV system was designed for operation by an existing vineyard employee with minimal training. To capture widely accepted pest bird control techniques and management culture of Willamette Valley vineyards and gain information for design, implementation, and industry acceptance of this UAV project, we surveyed the owners of 225 local vineyards. Survey results indicated that vineyard owners are open to implementing innovative pest bird control methods that do not affect the terroir of their vineyards and that could replace the use of netting, which they do not view favorably despite its being the most effective pest bird control method to date. Results also indicated that pest birds are most damaging to a vineyard’s perimeter and that many vineyards employ someone to patrol this perimeter with a shotgun loaded with cracker shells. The UAV system is able to traverse the airspace above this perimeter without interfering with neighboring homes or beneficial predators in the area. By using proven pest bird control methods in an autonomous UAV system, we designed a device that brings an innovative solution to vineyard owners.

Copyright © 2012 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In