0

Full Content is available to subscribers

Subscribe/Learn More  >

Reduced Order Model for MEMS Cantilever Resonators Under Soft AC Voltage Near Natural Frequency

[+] Author Affiliations
Dumitru I. Caruntu, Israel Martinez

University of Texas Pan American, Edinburg, TX

Paper No. IMECE2012-85963, pp. 389-394; 6 pages
doi:10.1115/IMECE2012-85963
From:
  • ASME 2012 International Mechanical Engineering Congress and Exposition
  • Volume 4: Dynamics, Control and Uncertainty, Parts A and B
  • Houston, Texas, USA, November 9–15, 2012
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4520-2
  • Copyright © 2012 by ASME

abstract

The nonlinear response of an electrostatically actuated cantilever beam microresonator is investigated. The AC voltage is of frequency near resonator’s natural frequency. A first order fringe correction of the electrostatic force and viscous damping are included in the model. The dynamics of the resonator is investigated using the Reduced Order Model (ROM) method, based on Galerkin procedure. Steady-state motions are found. Numerical results for the uniform microresonator are compared with those obtained via the Method of Multiple Scales (MMS).

Copyright © 2012 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In