Full Content is available to subscribers

Subscribe/Learn More  >

Continuum Manipulator Statics Based on the Principle of Virtual Work

[+] Author Affiliations
William S. Rone, Pinhas Ben-Tzvi

George Washington University, Washington, DC

Paper No. IMECE2012-87675, pp. 321-328; 8 pages
  • ASME 2012 International Mechanical Engineering Congress and Exposition
  • Volume 4: Dynamics, Control and Uncertainty, Parts A and B
  • Houston, Texas, USA, November 9–15, 2012
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4520-2
  • Copyright © 2012 by ASME


This paper presents a generalized method of determining the static shape conformation of a continuum robot based on the principle of virtual work. A lumped parameter model is utilized to model a prototypical single-segment manipulator. Elastic effects, gravitational forces and actuation loading are modeled as generalized forces and moments acting along the manipulators at discrete masses. A brief derivation of the governing static equations based on the principle of virtual work is presented, and then applied to the problem of continuum manipulator statics. The numerical method was successfully implemented numerically, capable of determining a system’s static equilibrium given a prescribed actuation.

Copyright © 2012 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In