0

Full Content is available to subscribers

Subscribe/Learn More  >

Analysis of Aeroelastic System Under Random Gust With Parametric Uncertainties Using Polynomial Chaos Expansion

[+] Author Affiliations
S. Venkatesh, Sunetra Sarkar

Indian Institute of Technology Madras, Chennai, India

Ajit Desai

GE Energy, Bangalore, India

Paper No. IMECE2012-87362, pp. 21-29; 9 pages
doi:10.1115/IMECE2012-87362
From:
  • ASME 2012 International Mechanical Engineering Congress and Exposition
  • Volume 4: Dynamics, Control and Uncertainty, Parts A and B
  • Houston, Texas, USA, November 9–15, 2012
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4520-2
  • Copyright © 2012 by ASME

abstract

In the design of wind turbine structures, aeroelastic stability is of utmost importance. It becomes even more crucial when there are uncertainties involved in it. A symmetric airfoil with its pitch-plunge flexibility is considered under potential flow. The potential flow model is justified as the classical flutter model involves unseparated flow over the body so that inviscid assumptions are valid. In the present study of aeroelastic system, nonlinear parameters have been considered as it can stabilize the diverging growth of a flutter oscillation. Quantification of aleatoric uncertainties present in the system has been done by modeling them as a Gaussian parameters. The epistemic uncertainty present in the system has also been reduced by considering unsteady vortex lattice method (UVLM) instead of the rigid wake model of Wagner. In this model, the wake is free to evolve and also the shape of airfoil has been considered. The present study involves usage of UVLM code on a NACA 0012 airfoil. The values of the linear flutter speed predicted by using UVLM code is in close agreement with that of the fixed wake model of Lee et al. When the structural nonlinearities are present, the system exhibits a self sustained oscillation of constant amplitude called as Limit Cycle Oscillation (LCO) even beyond the linear flutter speed. In the present study, a horizontal gust is modeled with a given spectra by superposition of a set of sinusoidal components which is a standard practice. This gust has then been applied on the airfoil along with the structural uncertainties. A spectral uncertainty quantification tool called Polynomial Chaos Expansion is used to quantify the effect of uncertainty propagation and calculate the response statistics. A non-intrusive version of the method using stochastic projection approach is used to capture the time histories and plot the PDFs at various time instants of all the realizations with Monte Carlo Simulation as a reference solution. The evolution of PCE coefficients in the time domain along with its ensemble variations has also been looked into in the present study.

Copyright © 2012 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In