0

Full Content is available to subscribers

Subscribe/Learn More  >

Parameter Identification in Ecological Systems via Discontinuous and Singular Control Regimes

[+] Author Affiliations
Dale B. McDonald, Joseph O. Falade

Midwestern State University, Wichita Falls, TX

Paper No. IMECE2012-86063, pp. 151-160; 10 pages
doi:10.1115/IMECE2012-86063
From:
  • ASME 2012 International Mechanical Engineering Congress and Exposition
  • Volume 4: Dynamics, Control and Uncertainty, Parts A and B
  • Houston, Texas, USA, November 9–15, 2012
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4520-2
  • Copyright © 2012 by ASME

abstract

Policy decisions regarding commercial harvesting of aquatic species by (typically governmental) regulatory agencies are often based in part upon field data, simulation results, and mathematical models. Regulatory agencies may limit or expand seasons, determine total harvest allowed, increase or decrease licensure fees, and raise or lower taxation rates in response to the state of the ecological system. Ultimately, the regulatory agency uses such measures to ensure viable populations in an attempt to balance ecosystem health and benefits for society. Such decisions impact commercial fishing ventures affecting the nature of harvesting efforts and their intensity. Conclusions drawn from mathematical models of ecological systems, and derived simulation results which affect this reality are highly dependent upon the validity of information available. Knowledge or estimates of critical parameters such as intrinsic growth rate, carrying capacity, etc. and dynamic variables such as biomass levels dictate the usefulness of analytical and numerical analyses. The purpose of this treatment is to illustrate that control laws applied to mathematical models of species dynamics may be used to discern estimates of parameters that inherently exist in such models in an effort to provide more valuable information upon which to base policy decisions. Dynamic models of both single-species evolution and predator-prey interactions are examined.

Copyright © 2012 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In