Full Content is available to subscribers

Subscribe/Learn More  >

Adaptive Time Integration Method for DAEs of Multibody Systems

[+] Author Affiliations
Jieyu Ding, Zhenkuan Pan

Qingdao University, Qingdao, Shandong, China

Paper No. IMECE2012-87049, pp. 1089-1092; 4 pages
  • ASME 2012 International Mechanical Engineering Congress and Exposition
  • Volume 4: Dynamics, Control and Uncertainty, Parts A and B
  • Houston, Texas, USA, November 9–15, 2012
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4520-2
  • Copyright © 2012 by ASME


An adaptive time integration method is developed for the index-3 differential-algebraic equations (DAEs) of multibody systems to improve the computational efficiency as well as the accuracy of the results. Based on the modified general-α method, the adaptive time integration is presented. At each discrete time interval, the time step size is changed through Richardson extrapolation with definable computation accuracy. A rotary rod slider system is used to validate the presented adaptive time integration. The accuracy and efficiency are determined by the expected order of the accuracy in Richardson extrapolation.

Copyright © 2012 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In