0

Full Content is available to subscribers

Subscribe/Learn More  >

An Adaptive Hybrid Force/Motion Control Design for Robot Manipulators Interacting in Constrained Motion With Unknown Non-Rigid Environments

[+] Author Affiliations
Aghil Jafari, Mehdi Rezaei, Ali Talebi, Saeed Shiry Ghidary

Amirkabir University of Technology, Tehran, Iran

Reza Monfaredi

Islamic Azad University-South Tehran, Tehran, Iran

Paper No. IMECE2012-93504, pp. 1063-1069; 7 pages
doi:10.1115/IMECE2012-93504
From:
  • ASME 2012 International Mechanical Engineering Congress and Exposition
  • Volume 4: Dynamics, Control and Uncertainty, Parts A and B
  • Houston, Texas, USA, November 9–15, 2012
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4520-2
  • Copyright © 2012 by ASME

abstract

In the present paper, the objective of hybrid control is specified and an adaptive hybrid force/motion control approach is proposed. Based on the concept of hybrid control, the task space is decomposed into position and force controlled subspaces. An adaptive scheme is presented which makes the controller robust when the robot is in interaction with an unknown non-rigid environment. By using the classical Lyapunov method, it is demonstrated that the proposed control law ensures the tracking of the unconstrained components of the desired end-effector trajectories, with regulation of the desired contact force along the constrained direction. Simulation results verify the effectiveness of our prosperous adaptive hybrid control in robot-environment interaction.

Copyright © 2012 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In