0

Full Content is available to subscribers

Subscribe/Learn More  >

Simulation of Blank Design for Blades of Francis Turbines

[+] Author Affiliations
Zhengkun Feng, Henri Champliaud, Sebastien Morin

University of Quebec, Montreal, QC, Canada

Michel Sabourin

Alstom Hydro Canada Inc., Sorel-Tracy, QC, Canada

Paper No. IMECE2012-86427, pp. 23-30; 8 pages
doi:10.1115/IMECE2012-86427
From:
  • ASME 2012 International Mechanical Engineering Congress and Exposition
  • Volume 3: Design, Materials and Manufacturing, Parts A, B, and C
  • Houston, Texas, USA, November 9–15, 2012
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4519-6
  • Copyright © 2012 by ASME

abstract

The metal pressing process which is widely used in many industries has advantages over casting process for producing large and thick blades of Francis turbine. For the design of pressing process, blank design should be firstly performed to determine the dimension of the flat blank. In fact, the traditional trial and error approach is not applicable for the blade design for Francis turbines that is not standard because of the different hydraulic characteristics of a hydropower plant from site to site. The powerful computing technology makes it possible to desgn optimum blanks by numerical modeling and simulation. In this paper, the multi-step inverse finite element approach is investigated for blank design and an elasto-plastic model has been built by using the well-known software ANSYS. Unfolding tests with cylindrical sections have been carried out and the numerical results agree well with the analytical results. Thereafter, a large and thick blade of Francis turbine for hydropower plants has been successfully unfolded by the FE model. Finally, for ensuring the machining of the blade after the pressing process, a new contour is obtained by extending the boundary of the flat blank provided by the FE model.

Copyright © 2012 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In