0

Full Content is available to subscribers

Subscribe/Learn More  >

A Fluid-Structure Interaction Model of Atherosclerosis at Abdominal Aorta

[+] Author Affiliations
M. A. Al-Rawi, A. M. Al-Jumaily, J. Lu

Auckland University of Technology, Auckland, New Zealand

A. Lowe

Pulsecor Limited, Auckland, New Zealand

Paper No. IMECE2012-85912, pp. 859-863; 5 pages
doi:10.1115/IMECE2012-85912
From:
  • ASME 2012 International Mechanical Engineering Congress and Exposition
  • Volume 2: Biomedical and Biotechnology
  • Houston, Texas, USA, November 9–15, 2012
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4518-9
  • Copyright © 2012 by ASME

abstract

Atherosclerosis is a form of cardiovascular disease that is a major contributing factor to death and disability worldwide. This study uses computational fluid dynamics (CFD) models as a cost effective and non-invasive method to determine the location and condition of atherosclerosis segments on the arterial wall. It also investigates changes in the abdominal aorta geometry including the inner and outer diameters, the length of the disease segments and the thickness of the arterial wall on the development of disease. Three groups of unhealthy conditions are assumed with each group having eight cases, which are compared to the control case of healthy condition. An invasive catheter pulsatile blood flow is imposed at the ascending aorta and pressure waveforms data is imposed at the four outlets of the aorta and also used to validate the present models. The results show that the stress phase angle at the brachial artery could be correlated to the early stages of atherosclerosis development at the abdominal aorta. This can be detected by measured values of the systolic wall shear stress and elastic strain intensity which increases due to the forward pulse wave resulting from atherosclerosis, while the diastolic values of stresses decreases due to the delay of the backward waves which reach the brachial artery. The three scenarios of atherosclerosis show that the forward and backward waves, which can be attributed to changes in the diameter, length and thickness of the abdominal aorta, can be non-invasively used to diagnose cardiovascular diseases.

Copyright © 2012 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In