0

Full Content is available to subscribers

Subscribe/Learn More  >

Parallel High-Precision Orbit Propagation Using the Modified Picard-Chebyshev Method

[+] Author Affiliations
Darin Koblick, Mark Poole

Space Systems Division, TASC Inc., El Segundo, CA

Praveen Shankar

California State University - Long Beach, Long Beach, CA

Paper No. IMECE2012-87878, pp. 587-605; 19 pages
doi:10.1115/IMECE2012-87878
From:
  • ASME 2012 International Mechanical Engineering Congress and Exposition
  • Volume 1: Advances in Aerospace Technology
  • Houston, Texas, USA, November 9–15, 2012
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4517-2
  • Copyright © 2012 by ASME

abstract

The modified Picard-Chebyshev method, when run in parallel, is thought to be more accurate and faster than the most efficient sequential numerical integration techniques when applied to orbit propagation problems. Previous experiments have shown that the modified Picard-Chebyshev method can have up to an order of magnitude speedup over the 12th order Runge-Kutta-Nystrom method. For this study, the evaluation of the accuracy and computational time of the modified Picard-Chebyshev method, using the Java Astrodynamics Toolkit (JAT) high-precision force model, is conducted to assess its runtime performance. Simulation results of the modified Picard-Chebyshev method, implemented in MATLAB and the MATLAB Parallel Computing Toolbox, are compared against the most efficient first and second order Ordinary Differential Equation (ODE) solvers. A total of six processors were used to assess the runtime performance of the modified Picard-Chebyshev method. It was found that for all orbit propagation test cases, where the gravity model was simulated to be of higher degree and order (10 additional function calls to JAT using a 70 degree × 70 order Earth Gravity Model to increase computational overhead to 0.142 seconds per force function call), the modified Picard-Chebyshev method was faster, by as much as 100%, than the other ODE solvers which were tested.

Copyright © 2012 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In