Full Content is available to subscribers

Subscribe/Learn More  >

Experimental and Numerical Investigation on the Discharge of Wood Pellets From a Hopper With the Discrete Element Method

[+] Author Affiliations
Dominik Höhner, Siegmar Wirtz, Viktor Scherer

Ruhr University Bochum, Bochum, Germany

Paper No. IMECE2012-87406, pp. 37-47; 11 pages
  • ASME 2012 International Mechanical Engineering Congress and Exposition
  • Volume 1: Advances in Aerospace Technology
  • Houston, Texas, USA, November 9–15, 2012
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4517-2
  • Copyright © 2012 by ASME


In this study hopper discharge experiments with wood pellets were conducted. The experimental bulk density, flow behavior and discharge rate were compared to corresponding 3-dimensional discrete element simulations with both multi-sphere and polyhedral approximations of the pellet geometry. Additionally a numerical sensitivity analysis for the particle-wall friction was made in order to evaluate the influence of this parameter on hopper discharge in the context of different particle geometries.

In the past comparisons of experimentally and numerically obtained results demonstrated the adequacy of the discrete element method for predicting the general discharge behavior of a hopper. Nevertheless, in this study, comparing two different particle shape-approximations, significant differences in terms of bulk density, discharge rate, flow profile and dependency on the particle-wall friction coefficient between both investigated particle-shape approximation schemes could be observed. As a result, particle shape-representation must be considered a significant parameter in DEM-simulations.

Copyright © 2012 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In