Full Content is available to subscribers

Subscribe/Learn More  >

Dynamic Analysis of a Buckling-Type Amplification Mechanism to Maximize the Power Output by Varying the Load Impedance and Control Timing

[+] Author Affiliations
James Torres, H. Harry Asada

Massachusetts Institute of Technology, Cambridge, MA

Paper No. DSCC2012-MOVIC2012-8813, pp. 123-130; 8 pages
  • ASME 2012 5th Annual Dynamic Systems and Control Conference joint with the JSME 2012 11th Motion and Vibration Conference
  • Volume 2: Legged Locomotion; Mechatronic Systems; Mechatronics; Mechatronics for Aquatic Environments; MEMS Control; Model Predictive Control; Modeling and Model-Based Control of Advanced IC Engines; Modeling and Simulation; Multi-Agent and Cooperative Systems; Musculoskeletal Dynamic Systems; Nano Systems; Nonlinear Systems; Nonlinear Systems and Control; Optimal Control; Pattern Recognition and Intelligent Systems; Power and Renewable Energy Systems; Powertrain Systems
  • Fort Lauderdale, Florida, USA, October 17–19, 2012
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-4530-1
  • Copyright © 2012 by ASME


Due to the limited displacement of piezoelectric stack actuators, common practice is to use some form of displacement amplification mechanism. This paper focuses on an externally leveraged mechanism that utilized a buckling motion to achieve large amplification ratios within a single stage. This mechanism interfaces with a sinusoidal gear track that acts as the load. The dynamics of the system are derived and are shown to be fifth order. Due to the significantly nonlinear amplification caused by the buckling phenomenon and the gear, the dynamics are run in simulation to gain insight into the performance of the actuator. There is shown to be an optimal speed at which to run the actuator to maximize the possible power output. Furthermore, due to the simple binary control significant benefits are achieved by varying the control timing based on the velocity to ensure the force and velocity of the output are in phase.

Copyright © 2012 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In