0

Full Content is available to subscribers

Subscribe/Learn More  >

An Iterative Learning Control Approach to Improving Fidelity in Internet-Distributed Hardware-in-the-Loop Simulation

[+] Author Affiliations
Tulga Ersal, Jeffrey L. Stein

University of Michigan, Ann Arbor, MI

Mark Brudnak

The U.S. Army Tank-Automotive Research, Development and Engineering Center, Warren, MI

Paper No. DSCC2012-MOVIC2012-8677, pp. 373-382; 10 pages
doi:10.1115/DSCC2012-MOVIC2012-8677
From:
  • ASME 2012 5th Annual Dynamic Systems and Control Conference joint with the JSME 2012 11th Motion and Vibration Conference
  • Volume 1: Adaptive Control; Advanced Vehicle Propulsion Systems; Aerospace Systems; Autonomous Systems; Battery Modeling; Biochemical Systems; Control Over Networks; Control Systems Design; Cooperative and Decentralized Control; Dynamic System Modeling; Dynamical Modeling and Diagnostics in Biomedical Systems; Dynamics and Control in Medicine and Biology; Estimation and Fault Detection; Estimation and Fault Detection for Vehicle Applications; Fluid Power Systems; Human Assistive Systems and Wearable Robots; Human-in-the-Loop Systems; Intelligent Transportation Systems; Learning Control
  • Fort Lauderdale, Florida, USA, October 17–19, 2012
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-4529-5
  • Copyright © 2012 by ASME

abstract

One of the main challenges of co-simulating hardware-in-the-loop systems in real-time over the Internet is the fidelity of the simulation. The dynamics of the Internet may significantly distort the dynamics of the network-integrated system. This paper presents the development of an iterative learning control based approach to improve fidelity of such networked system integration. Towards this end, a new metric for characterizing fidelity is proposed first, which, unlike some existing metrics, does not require knowledge about the reference dynamics (i.e., dynamics that would be observed, if the system was physically connected). Next, using this metric, the problem of improving fidelity is formulated as an iterative learning control problem. Finally, the proposed approach is illustrated on a purely simulation-based case study. The conclusion is that the proposed approach holds significant potential for achieving high fidelity levels.

Copyright © 2012 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In