0

Full Content is available to subscribers

Subscribe/Learn More  >

Technology Evolution Modeling and Decision Making Under Uncertainty

[+] Author Affiliations
Jonathan L. Arendt, Daniel A. McAdams, Richard J. Malak

Texas A&M University, College Station, TX

Paper No. DETC2012-70746, pp. 659-671; 13 pages
doi:10.1115/DETC2012-70746
From:
  • ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 7: 9th International Conference on Design Education; 24th International Conference on Design Theory and Methodology
  • Chicago, Illinois, USA, August 12–15, 2012
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-4506-6
  • Copyright © 2012 by ASME

abstract

Design is an uncertain human activity involving decisions with uncertain outcomes. Sources of uncertainty in product design include uncertainty in modeling methods, market preferences, and performance levels of subsystem technologies, among many others. The performance of a technology evolves over time, typically exhibiting improving performance. As the performance of a technology in the future is uncertain, quantifying the evolution of these technologies poses a challenge in making long-term design decisions. Here, we focus on how to make decisions using formal models of technology evolution. The scenario of a wind turbine energy company deciding which technology to invest in demonstrates a new technology evolution modeling technique and decision making method. The design of wind turbine arrays is a complex problem involving decisions such as location and turbine model selection. Wind turbines, like many other technologies, are currently evolving as the research and development efforts push the performance limits. In this research, the development of technology performance is modeled as an S-curve; slowly at first, quickly during heavy research and development effort, and slowly again as the performance approaches its limits. The S-curve model typically represents the evolution of just one performance attribute, but designers generally deal with problems involving multiple important attributes. Pareto frontiers representing the set of optimal solutions that the decision maker can select from at any point in time allow for modeling the evolution of technologies with multiple attributes. As the performance of a technology develops, the Pareto frontier shifts to a new location. The assumed S-curve form of technology development allows the designer to apply the uncertainty of technology development directly to the S-curve evolution model rather than applying the uncertainty to the future performance, giving a more focused application of uncertainty in the problem. The multi-attribute technology evolution modeling technique applied in decision-making gives designers greater insight when making long-term decisions involving technologies that evolve.

Copyright © 2012 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In