Full Content is available to subscribers

Subscribe/Learn More  >

A Literature Survey of Biodynamic Models for Whole Body Vibration and Vehicle Ride Comfort

[+] Author Affiliations
Prasad Bhagwan Kumbhar, Jingzhou (James) Yang

Texas Tech University, Lubbock, TX

Peijun Xu

Ebco Inc., Elgin, IL

Paper No. DETC2012-71061, pp. 671-687; 17 pages
  • ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 6: 1st Biennial International Conference on Dynamics for Design; 14th International Conference on Advanced Vehicle Technologies
  • Chicago, Illinois, USA, August 12–15, 2012
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-4505-9
  • Copyright © 2012 by ASME


Vehicle ride comfort plays an important role in the vehicle design. Human body is very sensitive to whole body vibration. Vehicle ride comfort has brought lots of concerns in recent years due to requirement of better ride comfort performance for newly developed vehicles. Vehicle ride comfort has a direct effect on driver’s performance and will result in overall customer satisfaction. Various papers have reported vehicle ride comfort and various biodynamic models have been built in the literature. However, there is a lack of a comprehensive literature survey to summarize all biodynamic models for whole body vibration and vehicle ride comfort. The purpose of this paper is to have a literature review of biodynamic models. So this paper initially focuses on various health issues due to whole body vibrations. Whole body vibration transfers environmental vibration to human body through a large contact area. Vibration evaluation methods such as weighted root mean square (r.m.s.) acceleration method, fourth power VDV method are discussed. Along with that the paper will focus on various biodynamic response functions. Human models in the literature are divided into three main groups: lumped parameter (LP), finite element model (FE), and multibody model (MB). In the LP model, human body is represented by several concentrated masses which are connected by springs and dampers. The FE model considers that human body consists of numerous finite elements. And in MB model, human body is made of several rigid bodies connected by bushing element for both translational and rotational motion. So this paper thoroughly summarizes various models developed to reduce human body vibration. At the end, four different approaches of assessing ride comfort are summarized. These four approaches are ride measurement in vehicles, ride simulator test, shaker table test and subjective ride measurement.

Copyright © 2012 by ASME
Topics: Vehicles , Vibration



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In