Full Content is available to subscribers

Subscribe/Learn More  >

Transmission Gear Ratio vs Fuel Consumption: Retrospective Analysis for Future Terrain Vehicle Applications

[+] Author Affiliations
Vladimir V. Vantsevich

The University of Alabama at Birmingham, Birmingham, AL

Bhargav H. Joshi

Lawrence Technological University, Southfield, MI

Gianantonio Bortolin

Volvo Construction Equipment, AB, Eskilstuna, Sweden

Paper No. DETC2012-70478, pp. 533-553; 21 pages
  • ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 6: 1st Biennial International Conference on Dynamics for Design; 14th International Conference on Advanced Vehicle Technologies
  • Chicago, Illinois, USA, August 12–15, 2012
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-4505-9
  • Copyright © 2012 by ASME


For decades, the technical problem of selecting optimal transmission gear ratio has been researched for various ground vehicles based on different selection criteria depending on a particular vehicle application; criteria of terrain mobility, traction and acceleration performance, engine power utilization and fuel efficiency have been widely in use. Innumerable analytical and experimental research results and data were implemented in thousand different transmission designs. Today, this unique information about the number of gears in transmission, and value of gear ratios make a field for (i) a research analysis of engineering efficiency of different transmission designs, which were in operation for decades, and (ii) developing more efficient analytical methodologies to select the number of gears and transmission gear ratios and, furthermore, continuously, in-real time control power transfer from the vehicle energy source to the wheels.

This paper considers the first, of the above-listed problems in detail with applications to various terrain vehicles and then specifically to off-road wheeled vehicles. The analysis presented in the paper, envelops simple random samples of up to 50 vehicles. It starts from WW2 military vehicles, goes to off-road trucks of 1980s and finally compares modern dump trucks and other terrain vehicles of several major world OEMs. The paper presents an analytical method, computational algorithm and results of a study in which, the efficiency of conventional analytical methodologies are evaluated using actual data on fuel consumption and characteristics of transmissions, vehicle engines, driveline and running gear systems and payloads. To serve this purpose, actual data of each vehicle is compared with analytical data of the vehicle, computed using the conventional methods, with focus on gear/velocity ratios and average fuel consumption at each transmission gear. The fuel consumption analysis was carried out by computing vehicle transport capacity as a function of the average velocity and mass of the payload for each vehicle.

The result shows a distinct change of behavior in gear design methodology between post war and present day vehicles. It was a determined divergence from the initial trends, which were based on either the geometrical progression method or arithmetic method for selecting the number of transmission speeds and the values of gear ratios. This resulted in not only having a wide range of speed characteristics of automatic transmission over a few manual gears, but also, as discovered in this study, lead to increased fuel consumption of some vehicles in all range of speeds.

The WW2 vehicles designed with manual transmission have gear ratios are closely aligned to analytically calculated geometric progression. Same behavior is observed in the off-road vehicles of 1980’s. Here, with a manual transmission, the trend is more towards less number of gears and with large interval between speed ratios. This of course gives a better fuel efficiency, but leads to trade off in lower average vehicle velocity.

The transmission design for modern day dump trucks is also very close to the geometric progression approach. The other modern off-road trucks, as discovered in the analysis, follow an arithmetic progression. Although this results in smooth transmission, but fuel efficiency is compromised significantly, compared to dump trucks.

It is important to note that a design based on geometric progression, would result in same speed distribution with less number of gears and better fuel efficiency. For a modern day terrain trucks, to have an optimum combination of both characteristics, it is important to consider all the parameters affecting velocity ratios and fuel consumption and incorporate an efficient analytical methodology to stay competitive, in the rapidly evolving market of all terrain vehicles.

Copyright © 2012 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In