0

Full Content is available to subscribers

Subscribe/Learn More  >

Dynamics-Based Health Monitoring of Wind Turbine Rotor Blades Using Integrated Inertial Sensors

[+] Author Affiliations
Scott R. Dana, Douglas E. Adams

Purdue University, West Lafayette, IN

Paper No. DETC2012-71215, pp. 253-263; 11 pages
doi:10.1115/DETC2012-71215
From:
  • ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 6: 1st Biennial International Conference on Dynamics for Design; 14th International Conference on Advanced Vehicle Technologies
  • Chicago, Illinois, USA, August 12–15, 2012
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-4505-9
  • Copyright © 2012 by ASME

abstract

By analyzing the rotor structural dynamic response of a wind turbine, this research aims to improve decision making in operation and maintenance. To illustrate the potential of this measurement technique, a horizontal axis wind turbine test-bed is used to experimentally simulate the rotor structural dynamic response to uniform flow as well as horizontal and vertical shear flow across the rotor plane. The structural dynamic characteristics of the wind turbine rotor are described in the context of modal analysis where each mode of vibration occurs at a particular frequency with a particular modal deflection shape. These deflection shapes facilitate the effectiveness with which a given aerodynamic load couples into the rotor to produce mechanical power in addition to vibrations of the rotor. Operational modal analysis is used to explore the effects of changes in the wind state on the sensitivity of condition monitoring data to two types of damages in the turbine rotor, ice accretion and blade root cracking. Additionally, the degree to which various damage mechanisms can be identified in the presence of yaw and pitch set points is analyzed. It is shown that certain frequencies in the measured response using the flap, edgewise, and span directions of the wind turbine are sensitive to a change in condition of the rotor for use in detecting that type of damage. By analyzing the changes in the modal response amplitudes, the type of damage present in the rotor system can also be classified.

Copyright © 2012 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In