0

Full Content is available to subscribers

Subscribe/Learn More  >

Rotordynamic Analysis Using the Complex Transfer Matrix

[+] Author Affiliations
Philip Varney, Itzhak Green

Georgia Institute of Technology, Atlanta, GA

Paper No. DETC2012-70643, pp. 237-246; 10 pages
doi:10.1115/DETC2012-70643
From:
  • ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 6: 1st Biennial International Conference on Dynamics for Design; 14th International Conference on Advanced Vehicle Technologies
  • Chicago, Illinois, USA, August 12–15, 2012
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-4505-9
  • Copyright © 2012 by ASME

abstract

The transfer matrix method is an expedient numerical technique for determining the dynamic behavior of a rotordynamic system (e.g., whirl frequencies, steady-state response to forcing). The typical 8 × 8 transfer matrix suffers from several deficiencies. First, for a system incorporating damping, the method generates a characteristic polynomial of degree 8N for a model of N lumped masses (degree 4N for an undamped model). The high degree of the polynomial results in lengthy computation times and decreased accuracy. Second, as discussed herein, the 8 × 8 formulation fails to distinguish between forward and backward whirl. These deficiencies are overcome by a novel complex-valued state variable redefinition resulting in a 4×4 transfer matrix including external support stiffness and damping. The complex transfer matrix is then modified to account for analysis within a rotating reference frame. Analysis in a rotating reference frame is a judicious means to determine unique system fault characteristics, which serve as a starting point for the development of an on-line fault detection system. Insights into using the complex transfer matrix in a rotating reference frame are discussed. Analytical results in both inertial and rotating reference frames for an overhung rotor model are provided.

Copyright © 2012 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In