Full Content is available to subscribers

Subscribe/Learn More  >

Computational Synthesis for Nonlinear Dynamics Based Design of Planar Resonant Structures

[+] Author Affiliations
Astitva Tripathi, Anil K. Bajaj

Purdue University, West Lafayette, IN

Paper No. DETC2012-71463, pp. 187-196; 10 pages
  • ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 6: 1st Biennial International Conference on Dynamics for Design; 14th International Conference on Advanced Vehicle Technologies
  • Chicago, Illinois, USA, August 12–15, 2012
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-4505-9
  • Copyright © 2012 by ASME


Nonlinear phenomena such as internal resonances have significant potential applications in Micro Electro Mechanical Systems (MEMS) for increasing the sensitivity of biological and chemical sensors and signal processing elements in circuits. While several theoretical systems are known which exhibit 1:2 or 1:3 internal resonances, designing systems that have the desired properties required for internal resonance as well as are physically realizable as MEMS devices is a significant challenge. Traditionally, the design process for obtaining resonant structures exhibiting an internal resonance has relied heavily on the designer’s prior knowledge and experience. However, with advances in computing power and topology optimization techniques, it should be possible to synthesize structures with the required nonlinear properties (such as having modal interactions) computationally. In this work, a preliminary method for computer based synthesis of structures consisting of beams for desired internal resonance is presented. The linear structural design is accompalished by a Finite Element Method (FEM) formulation implemented in Matlab to start with a base structure and iteratively modify it to obtain a structure with the desired properties. Possible design criteria are having the first two natural frequencies of the structure in some required ratio (such as 1:2 or 1:3). Once a topology of the structure is achieved that meets the desired criterion (i.e., the program converges to a definite structure), the linear mode shapes of the structure can be extracted from the finite element analysis, and a more complete Lagrangian formulation of the nonlinear elastic structure can be used to develop a nonlinear two-mode model of the structure. The reduced-order model is expected to capture the appropriate resonant dynamics associated with modal interactions between the two modes. The nonlinear response of the structure can be obtained by application of perturbation methods such as averaging on the two-mode model. Many candidate structures are synthesized that meet the desired modal frequency criterion and their nonlinear responses are compared.

Copyright © 2012 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In