0

Full Content is available to subscribers

Subscribe/Learn More  >

On the Effects of Driving Amplitude, Frequency and Magnetic Fields on the Feed Rate of a Vibratory Micro-Pin Feeder

[+] Author Affiliations
Benjamin E. Rimai, Raymond J. Cipra

Purdue University, West Lafayette, IN

Paper No. DETC2012-71349, pp. 175-179; 5 pages
doi:10.1115/DETC2012-71349
From:
  • ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 6: 1st Biennial International Conference on Dynamics for Design; 14th International Conference on Advanced Vehicle Technologies
  • Chicago, Illinois, USA, August 12–15, 2012
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-4505-9
  • Copyright © 2012 by ASME

abstract

The use of micro-pin feeder-bowls has been established as a way to singulate and orient micro-scale metallic pins of varying lengths. Increasing the rate and reliability with which pins can feed through the bowl is important when considering the use of such a feeder-bowl in an industrial setting.

Previous experimental work, which was limited to a single driving frequency and small range of driving amplitudes of the feeder-bowl, showed low feed rates and long capture times for pins whose aspect ratio exceeded five-to-one. New experimental work has shown that by altering the driving amplitude and frequency of the feeder-bowl, pins with aspect ratios exceeding seven-to-one could be fed.

Because the frequency response of feeder-bowls may be limited, other techniques for improving the feed rate for long pins were also sought. One such technique was the magnetizing of the pins to increase their response to a magnetic field which surrounded the feeder-bowl. In some circumstances, more than a 70% reduction in average capture time was observed.

The improved capture performance for long pins will permit more freedom in the design of devices that can be assembled with the aid of vibratory micro-pin feeder-bowls. The research results will also be used to improve the accuracy of feeder bowl simulations.

Copyright © 2012 by ASME
Topics: Magnetic fields

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In