0

Full Content is available to subscribers

Subscribe/Learn More  >

A Simple Analytical Tool for Legged Robot Design

[+] Author Affiliations
Zhuohua Shen, Justin Seipel

Purdue University, West Lafayette, IN

Paper No. DETC2012-71452, pp. 967-976; 10 pages
doi:10.1115/DETC2012-71452
From:
  • ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 4: 36th Mechanisms and Robotics Conference, Parts A and B
  • Chicago, Illinois, USA, August 12–15, 2012
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-4503-5
  • Copyright © 2012 by ASME

abstract

Although legged locomotion is better at tackling complicated terrains compared with wheeled locomotion, legged robots are rare, in part, because of the lack of simple design tools. The dynamics governing legged locomotion are generally nonlinear and hybrid (piecewise-continuous) and so require numerical simulation for analysis and are not easily applied to robot designs. During the past decade, a few approximated analytical solutions of Spring-Loaded Inverted Pendulum (SLIP), a canonical model in legged locomotion, have been developed. However, SLIP is energy conserving and cannot predict the dynamical stability of real-world legged locomotion. To develop new analytical tools for legged robot designs, we first analytically solved SLIP in a new way. Then based on SLIP solution, we developed an analytical solution of a hip-actuated Spring-Loaded Inverted Pendulum (hip-actuated-SLIP) model, which is more biologically relevant and stable than the canonical energy conserving SLIP model. The analytical approximations offered here for SLIP and the hip actuated-SLIP solutions compare well with the numerical simulations of each. The analytical solutions presented here are simpler in form than those resulting from existing analytical approximations. The analytical solutions of SLIP and the hip actuated-SLIP can be used as tools for robot design or for generating biological hypotheses.

Copyright © 2012 by ASME
Topics: Robots , Design

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In