Full Content is available to subscribers

Subscribe/Learn More  >

Self-Adaptive Underactuated Hybrid Rolling/Walking Locomotion

[+] Author Affiliations
Carl A. Nelson

University of Nebraska-Lincoln, Lincoln, NE

Paper No. DETC2012-71394, pp. 951-956; 6 pages
  • ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 4: 36th Mechanisms and Robotics Conference, Parts A and B
  • Chicago, Illinois, USA, August 12–15, 2012
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-4503-5
  • Copyright © 2012 by ASME


In planetary exploration and other similar robotic applications, it is possible to encounter obstacles on multiple scales, making it difficult to design wheeled locomotion that works well for all terrain types. Legged locomotion tends to be less efficient and slower, but allows better obstacle clearance. This paper describes a novel method of achieving robotic locomotion over uneven terrain using a passive underactuation technique. Using planetary gear trains with one input degree of freedom and two output degrees of freedom, the natural obstacle-based locking of select outputs can cause the transition of power through the alternate outputs. By designing the primary outputs as wheels and the secondary outputs as legs with more ground clearance, a naturally adaptive hybrid gait incorporating both rolling and walking can be generated without the need for sophisticated sensing and control. Derivation and simulation validation are presented.

Copyright © 2012 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In