0

Full Content is available to subscribers

Subscribe/Learn More  >

Design of a 5-SS Spatial Steering Linkage

[+] Author Affiliations
Mark M. Plecnik, J. Michael McCarthy

University of California, Irvine, CA

Paper No. DETC2012-71405, pp. 725-735; 11 pages
doi:10.1115/DETC2012-71405
From:
  • ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 4: 36th Mechanisms and Robotics Conference, Parts A and B
  • Chicago, Illinois, USA, August 12–15, 2012
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-4503-5
  • Copyright © 2012 by ASME

abstract

This paper presents the kinematic synthesis of a steering linkage that changes track, wheelbase, camber, and wheel height in a turn, while maintaining Ackermann geometry. Each wheel is controlled by a 5-SS platform linkage, which consists of a moving platform connected by five SS chains to the vehicle chassis. Ackermann steering geometry ensures all four wheels will travel on circular arcs that share the same center point. S denotes a spherical or ball-in-socket joint.

The kinematic synthesis problem is formulated using seven spatial task positions. The procedure computes the SS chains that guide the platform through the seven task positions, and examines all combinations of five that form a single degree-of-freedom linkage. A kinematic analysis identifies the performance of each design candidate, and eliminates functional defects.

In the design process, the task positions are modified randomly within constraints in order to find a useful mechanism design. Mechanisms are deemed useful if they travel smoothly through all seven task positions. Upon analyzing 1000 sets of task positions, only 10 useful mechanisms were found. A second iteration produced 22 useful mechanisms from 1000 task sets. An example of the design of a steering linkage is presented. A video of this linkage can be seen at http://www.youtube.com/watch?v=hEvbDiyQMiw.

Copyright © 2012 by ASME
Topics: Linkages , Design

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In