Full Content is available to subscribers

Subscribe/Learn More  >

Combined Graph Layout Algorithms for Automated Sketching of Kinematic Chains

[+] Author Affiliations
Martín A. Pucheta, Nicolás E. Ulrich, Alberto Cardona

Universidad Nacional del Litoral - CONICET, Santa Fe, Argentina

Paper No. DETC2012-70665, pp. 513-523; 11 pages
  • ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 4: 36th Mechanisms and Robotics Conference, Parts A and B
  • Chicago, Illinois, USA, August 12–15, 2012
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-4503-5
  • Copyright © 2012 by ASME


The graph layout problem arises frequently in the conceptual stage of mechanism design, specially in the enumeration process where a large number of topological solutions must be analyzed. Two main objectives of graph layout are the avoidance or minimization of edge crossings and the aesthetics. Edge crossings cannot be always avoided by force-directed algorithms since they reach a minimum of the energy in dependence with the initial position of the vertices, often randomly generated. Combinatorial algorithms based on the properties of the graph representation of the kinematic chain can be used to find an adequate initial position of the vertices with minimal edge crossings. To select an initial layout, the minimal independent loops of the graph can be drawn as circles followed by arcs, in all forms. The computational cost of this algorithm grows as factorial with the number of independent loops. This paper presents a combination of two algorithms: a combinatorial algorithm followed by a force-directed algorithm based on spring repulsion and electrical attraction, including a new concept of vertex-to-edge repulsion to improve aesthetics and minimize crossings. Atlases of graphs of complex kinematic chains are used to validate the results. The layouts obtained have good quality in terms of minimization of edge crossings and maximization of aesthetic characteristics.

Copyright © 2012 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In