0

Full Content is available to subscribers

Subscribe/Learn More  >

Contact Kinematics in the Roller Screw Mechanism

[+] Author Affiliations
Matthew H. Jones, Steven A. Velinsky

University of Califronia, Davis, Davis, CA

Paper No. DETC2012-70254, pp. 451-459; 9 pages
doi:10.1115/DETC2012-70254
From:
  • ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 4: 36th Mechanisms and Robotics Conference, Parts A and B
  • Chicago, Illinois, USA, August 12–15, 2012
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-4503-5
  • Copyright © 2012 by ASME

abstract

This paper investigates the nature of the contact between the load transferring surfaces in the roller screw mechanism, i.e., between the screw and roller threads and between the nut and roller threads. The analysis is applied to both planetary roller screws and recirculating roller screws. Prior work has neglected to take a fundamental approach toward understanding the mechanics of the contact between these components, and as a consequence, detailed analysis of aspects such as contact mechanics, friction, lubrication, and wear are not carried out correctly. Accordingly, in this paper, the principle of conjugate surfaces is used to establish contact at the screw-roller and nut-roller interfaces. The in-plane angles to the contact points are derived and it is shown that for the screw-roller interface, the contact point cannot lie on the bodies’ line of centers as has been the assumption in previous papers. Then, based on the curved profile of the roller thread, the radii of contact on the roller, screw, and nut bodies are also derived. Knowledge of the contact point locations is necessary to understand the interaction forces between the key components of the roller screw mechanism. In addition, accurate estimates of the radii of contact are necessary for minimizing the phenomenon of roller migration, a condition that can cause binding between components and eventually lead to the destruction of the mechanism. Last, the principal radii of curvature at the contact points and the angle between the principal axes are derived. These are essential for further development of the contact mechanics, such as the surface stresses, deformations, and consideration of wear.

Copyright © 2012 by ASME
Topics: Kinematics , Screws , Rollers

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In