Full Content is available to subscribers

Subscribe/Learn More  >

Multistable Shape-Shifting Surfaces

[+] Author Affiliations
Paul Montalbano, Craig Lusk

University of South Florida, Tampa, FL

Paper No. DETC2012-71159, pp. 321-330; 10 pages
  • ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 4: 36th Mechanisms and Robotics Conference, Parts A and B
  • Chicago, Illinois, USA, August 12–15, 2012
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-4503-5
  • Copyright © 2012 by ASME


This paper presents designs for Multistable Shape-Shifting Surfaces (MSSS) by introducing bistability into the Shape-Shifting Surface (SSS). SSSs are defined as surfaces that retain their effectiveness as a physical barrier while undergoing changes in shape. The addition of bistability to the SSS gives the surface multiple distinct positions in which it remains when shifted to, i.e. by designing bistability into a single SSS link, the SSS unit cell can change into multiple shapes, and stabilize within the resulting shape, while maintaining integrity against various forms of external assaults normal to its surface. Planar stable configurations of the unit cell include, expanded, compressed, sheared, half-compressed, and partially-compressed, resulting in the planar shapes of a large square, small square, rhombus, rectangle, and trapezoid respectively. Tiling methods were introduced which gave the ability to produce out-of-plane assemblies using planar MSSS unit cells. Applications for MSSSs include size-changing vehicle beds, expandable laptop screens, deformable walls, and volume-changing rigid-storage containers. Analysis of the MSSS was done using Pseudo-rigid-Body Models (PRBMs) and Finite Element Analysis (FEA) which ensured bistable characteristics before prototypes were fabricated.

Copyright © 2012 by ASME
Topics: Shapes



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In