Full Content is available to subscribers

Subscribe/Learn More  >

Kinematic Synthesis of Planar, Shape-Changing Compliant Mechanisms Using Pseudo-Rigid-Body Models

[+] Author Affiliations
Kai Zhao, James P. Schmiedeler

University of Notre Dame, Notre Dame, IN

Andrew P. Murray

University of Dayton, Dayton, OH

Paper No. DETC2012-70359, pp. 199-210; 12 pages
  • ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 4: 36th Mechanisms and Robotics Conference, Parts A and B
  • Chicago, Illinois, USA, August 12–15, 2012
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-4503-5
  • Copyright © 2012 by ASME


This paper presents a procedure using Pseudo-Rigid-Body Models (PRBMs) to synthesize partially compliant mechanisms capable of approximating a shape change defined by a set of morphing curves in different positions. To generate a single-piece compliant mechanism, flexural pivots and flexible beams are both utilized in the mechanism. New topologies defined by compliant mechanism matrices are enumerated by modifying the components that make up a single degree-of-freedom (DOF) rigid-body mechanism. Because of the introduction of the PRBM for flexural pivots and the simplified PRBM for flexible beams, torsional springs are attached at the characteristic pivots of the 1-DOF rigid-body mechanism in order to generate a corresponding pseudo-rigid-body mechanism. A multi-objective genetic algorithm is employed to find a group of viable compliant mechanisms in the form of candidate pseudo-rigid-body mechanisms that tradeoff minimizing shape matching error with minimizing actuator energy. Since the simplified beam model is not accurate, an optimization loop is established to find the position and shape of the flexible beam using a finite link beam model. The optimal flexible beams together with the pseudo-rigid-body mechanism define the solution mechanism. The procedure is demonstrated with an example in which a partially compliant mechanism approximating two closed-curve profiles is synthesized.

Copyright © 2012 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In