0

Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Solutions of Polynomial Equations for the Eight-Position Synthesis of the Cylindrical-Spherical Dyad

[+] Author Affiliations
Chintien Huang, Chenning Hung, Kuenming Tien

National Cheng Kung University, Tainan, Taiwan

Paper No. DETC2012-70587, pp. 1535-1541; 7 pages
doi:10.1115/DETC2012-70587
From:
  • ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 4: 36th Mechanisms and Robotics Conference, Parts A and B
  • Chicago, Illinois, USA, August 12–15, 2012
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-4503-5
  • Copyright © 2012 by ASME

abstract

This paper investigates the numerical solutions of equations for the eight-position rigid-body guidance of the cylindrical-spherical (C-S) dyad. We seek to determine the number of finite solutions by using the numerical continuation method. We derive the design equations using the geometric constraints of the C-S dyad and obtain seven quartic polynomial equations and one quadratic equation. We then solve the system of equations by using the software package Bertini. After examining various specifications, including those with random complex numbers, we conclude that there are 804 finite solutions of the C-S dyad for guiding a body through eight prescribed positions. When designing spatial dyads for rigid-body guidance, the C-S dyad is one of the four dyads that result in systems of equal numbers of equations and unknowns if the maximum number of allowable positions is specified. The numbers of finite solutions in the syntheses of the other three dyads have been obtained previously, and this paper provides the computational kinematic result of the last unsolved problem, the eight-position synthesis of the C-S dyad.

Copyright © 2012 by ASME
Topics: Polynomials

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In