0

Full Content is available to subscribers

Subscribe/Learn More  >

Dynamics-Based Model for a New Class of a Rectilinear-Gait for a Snake-Inspired Robot

[+] Author Affiliations
James K. Hopkins, Satyandra K. Gupta

University of Maryland, College Park, MD

Paper No. DETC2012-71256, pp. 151-160; 10 pages
doi:10.1115/DETC2012-71256
From:
  • ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 4: 36th Mechanisms and Robotics Conference, Parts A and B
  • Chicago, Illinois, USA, August 12–15, 2012
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-4503-5
  • Copyright © 2012 by ASME

abstract

Snake-inspired locomotion is much more maneuverable compared to conventional locomotion concepts and it enables a robot to navigate through rough terrain. A rectilinear gait is quite flexible and has the following benefits: functionality on a wide variety of terrains, enables a highly stable robot platform, and provides pure undulatory motion without passive wheels. These benefits make rectilinear gaits especially suitable for search and rescue applications. However, previous robot designs utilizing rectilinear gaits were slow in speed. This paper introduces a new class of rectilinear gaits to be utilized by a snake-inspired robot design which is capable of pure linear motion and variable traction. The general model for the gait class is based on serial robot dynamics using the Lagrangian formulation. The gait class includes four unique gaits: a forward and a turning gait, which both emphasize speed for the robot; and a forward and turning gait which emphasize traction. Also, we perform an analysis of the variable traction concept.

Copyright © 2012 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In