Full Content is available to subscribers

Subscribe/Learn More  >

A Robotics Approach to Enhance Conformational Sampling of Proteins

[+] Author Affiliations
Juan Cortés, Ibrahim Al-Bluwi

LAAS-CNRS, Toulouse, France

Paper No. DETC2012-70105, pp. 1177-1186; 10 pages
  • ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 4: 36th Mechanisms and Robotics Conference, Parts A and B
  • Chicago, Illinois, USA, August 12–15, 2012
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-4503-5
  • Copyright © 2012 by ASME


Proteins are biological macromolecules that play essential roles in living organisms. Furthermore, the study of proteins and their function is of interest in other fields in addition to biology, such as pharmacology and biotechnology. Understanding the relationship between protein structure, dynamics and function is indispensable for advances in all these areas. This requires a combination of experimental and computational methods, whose development is the object of very active interdisciplinary research. In such a context, this paper presents a technique to enhance conformational sampling of proteins carried out with computational methods such as molecular dynamics simulations or Monte Carlo methods. Our approach is based on a mechanistic representation of proteins that enables the application of efficient methods originating from robotics. The paper explains the generalities of the approach, and gives details on its application to devise Monte Carlo move classes. Results show the good performance of the method for sampling the conformational space of different types of proteins.

Copyright © 2012 by ASME
Topics: Robotics , Proteins



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In